Accurate Modelling of Tissue Properties in Diffuse Optical Imaging of the Human Brain
نویسنده
چکیده
Teknillinen korkeakoulu Informaatio-ja luonnontieteiden tiedekunta Lääketieteellisen tekniikan ja laskennallisen tieteen laitos Article dissertation (summary + original articles) Monograph Faculty Department Field of research Opponent(s) Supervisor Instructor Abstract Keywords diffuse optical imaging, monte carlo, biomedical optics Accurate modelling of tissue properties in diffuse optical imaging of the human brain X Diffuse optical imaging (DOI) is an emerging imaging modality for non-invasive functional medical imaging, using near infrared (NIR) or visible red light. The innovation is to derive functional information about living tissue from measurements of light that has passed through it. Optical imaging can be applied to imaging of tissues as diverse as the central nervous system, female breast, muscle, and joints of fingers. This thesis addresses the application of DOI to studying the human brain. In this thesis, the problems of modelling light propagation in the adult and infant human head, and reconstructing three-dimensional images of functional changes in the brain using optical measurements, are addressed. Difference imaging, where changes from baseline optical parameters rather than absolute parameter values are reconstructed, is considered. The goal was to develop methods for accurate modelling of light propagation and to clarify how specific aspects of the computational modelling affect the reconstruction of functional images from optical measurements of the human brain. Specifically, the significance of anisotropic light propagation in the white matter, and a priori knowledge of the anatomy and the optical properties of the head and brain are studied. Moreover, a generic probabilistic atlas model of the infant head to enhance image reconstruction is developed. Significance of anisotropic light propagation was found to be small in optical imaging of the adult brain. Although anisotropic light propagation may have a larger impact on the measured signal when infants are imaged, results suggest that image reconstruction can be performed without taking anisotropy into consideration. The use of a priori anatomical knowledge was found to significantly improve the accuracy and robustness of image reconstruction in difference imaging. The results suggest that for optimal reconstructions, individual MR imaging based anatomical data should be used when possible. For cases where individual anatomical data is not available, atlas models should be developed. An important consideration is how to obtain the baseline optical parameters of tissue classes in the anatomical model. Literature-derived parameters can be used as a starting point. For optimal results however, methods should be developed for estimating the baseline parameters from measured data. Research in Medicine …
منابع مشابه
Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملExperimental Visualization of Labyrinthine Structure with Optical Coherence Tomography
Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...
متن کاملGeometrically complex 3D-printed phantoms for diffuse optical imaging
Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, t...
متن کاملEngineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)
Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...
متن کاملImproving 3-D Imaging Breast Cancer Diagnosis Systems Using a New Method for Placement of Near-Infrared Sources and Detectors
The objective of this research was to improve 3-D imaging system by near-infrared light emission in breast tissue to achieve a more accurate diagnosis of tumor. The results of repeated experiments in this research have shown that with this imaging system, a more accurate diagnosis of abnormal area depends on the location of the sources and detectors. Therefore, an optimal location model has bee...
متن کامل